metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.114D10, C10.202+ (1+4), (C4×D4)⋊21D5, (D4×C20)⋊23C2, C4⋊C4.319D10, C20⋊D4.9C2, D20⋊8C4⋊16C2, (C4×Dic10)⋊34C2, (C2×D4).220D10, C4.16(C4○D20), C4.D20⋊19C2, C20.17D4⋊9C2, (C22×C4).48D10, Dic5⋊3Q8⋊16C2, D10.12D4⋊8C2, C20.111(C4○D4), (C2×C10).103C24, (C2×C20).701C23, (C4×C20).158C22, C22⋊C4.116D10, Dic5.5D4⋊8C2, C2.21(D4⋊6D10), Dic5.61(C4○D4), (D4×C10).263C22, (C2×D20).145C22, C4⋊Dic5.301C22, (C4×Dic5).84C22, (C2×Dic5).44C23, (C22×D5).37C23, C22.128(C23×D5), C23.100(C22×D5), D10⋊C4.87C22, C23.23D10⋊18C2, (C22×C20).365C22, (C22×C10).173C23, C5⋊1(C22.53C24), C10.D4.66C22, C23.D5.107C22, (C2×Dic10).151C22, (C4×C5⋊D4)⋊45C2, C2.26(D5×C4○D4), C2.52(C2×C4○D20), C10.45(C2×C4○D4), (C2×C4×D5).253C22, (C5×C4⋊C4).332C22, (C2×C4).286(C22×D5), (C2×C5⋊D4).124C22, (C5×C22⋊C4).127C22, SmallGroup(320,1231)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 838 in 236 conjugacy classes, 97 normal (43 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×11], C22, C22 [×12], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×10], D4 [×10], Q8 [×4], C23 [×2], C23 [×2], D5 [×2], C10 [×3], C10 [×2], C42, C42 [×4], C22⋊C4 [×2], C22⋊C4 [×10], C4⋊C4, C4⋊C4 [×5], C22×C4 [×2], C22×C4 [×2], C2×D4, C2×D4 [×5], C2×Q8 [×2], Dic5 [×2], Dic5 [×5], C20 [×2], C20 [×4], D10 [×6], C2×C10, C2×C10 [×6], C4×D4, C4×D4 [×3], C4×Q8 [×2], C22.D4 [×4], C4.4D4 [×4], C4⋊1D4, Dic10 [×4], C4×D5 [×2], D20 [×2], C2×Dic5 [×4], C2×Dic5 [×2], C5⋊D4 [×6], C2×C20 [×3], C2×C20 [×2], C2×C20 [×2], C5×D4 [×2], C22×D5 [×2], C22×C10 [×2], C22.53C24, C4×Dic5 [×2], C4×Dic5 [×2], C10.D4 [×2], C10.D4 [×2], C4⋊Dic5, D10⋊C4 [×6], C23.D5 [×4], C4×C20, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10 [×2], C2×C4×D5 [×2], C2×D20, C2×C5⋊D4 [×4], C22×C20 [×2], D4×C10, C4×Dic10, C4.D20, D10.12D4 [×2], Dic5.5D4 [×2], Dic5⋊3Q8, D20⋊8C4, C4×C5⋊D4 [×2], C23.23D10 [×2], C20.17D4, C20⋊D4, D4×C20, C42.114D10
Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×4], C24, D10 [×7], C2×C4○D4 [×2], 2+ (1+4), C22×D5 [×7], C22.53C24, C4○D20 [×2], C23×D5, C2×C4○D20, D4⋊6D10, D5×C4○D4, C42.114D10
Generators and relations
G = < a,b,c,d | a4=b4=1, c10=d2=b2, ab=ba, cac-1=a-1b2, dad-1=a-1, bc=cb, dbd-1=a2b, dcd-1=c9 >
(1 55 40 155)(2 146 21 46)(3 57 22 157)(4 148 23 48)(5 59 24 159)(6 150 25 50)(7 41 26 141)(8 152 27 52)(9 43 28 143)(10 154 29 54)(11 45 30 145)(12 156 31 56)(13 47 32 147)(14 158 33 58)(15 49 34 149)(16 160 35 60)(17 51 36 151)(18 142 37 42)(19 53 38 153)(20 144 39 44)(61 94 129 119)(62 110 130 85)(63 96 131 101)(64 112 132 87)(65 98 133 103)(66 114 134 89)(67 100 135 105)(68 116 136 91)(69 82 137 107)(70 118 138 93)(71 84 139 109)(72 120 140 95)(73 86 121 111)(74 102 122 97)(75 88 123 113)(76 104 124 99)(77 90 125 115)(78 106 126 81)(79 92 127 117)(80 108 128 83)
(1 102 11 112)(2 103 12 113)(3 104 13 114)(4 105 14 115)(5 106 15 116)(6 107 16 117)(7 108 17 118)(8 109 18 119)(9 110 19 120)(10 111 20 101)(21 98 31 88)(22 99 32 89)(23 100 33 90)(24 81 34 91)(25 82 35 92)(26 83 36 93)(27 84 37 94)(28 85 38 95)(29 86 39 96)(30 87 40 97)(41 128 51 138)(42 129 52 139)(43 130 53 140)(44 131 54 121)(45 132 55 122)(46 133 56 123)(47 134 57 124)(48 135 58 125)(49 136 59 126)(50 137 60 127)(61 152 71 142)(62 153 72 143)(63 154 73 144)(64 155 74 145)(65 156 75 146)(66 157 76 147)(67 158 77 148)(68 159 78 149)(69 160 79 150)(70 141 80 151)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 38 31 28)(22 27 32 37)(23 36 33 26)(24 25 34 35)(29 30 39 40)(41 48 51 58)(42 57 52 47)(43 46 53 56)(44 55 54 45)(49 60 59 50)(61 124 71 134)(62 133 72 123)(63 122 73 132)(64 131 74 121)(65 140 75 130)(66 129 76 139)(67 138 77 128)(68 127 78 137)(69 136 79 126)(70 125 80 135)(81 107 91 117)(82 116 92 106)(83 105 93 115)(84 114 94 104)(85 103 95 113)(86 112 96 102)(87 101 97 111)(88 110 98 120)(89 119 99 109)(90 108 100 118)(141 148 151 158)(142 157 152 147)(143 146 153 156)(144 155 154 145)(149 160 159 150)
G:=sub<Sym(160)| (1,55,40,155)(2,146,21,46)(3,57,22,157)(4,148,23,48)(5,59,24,159)(6,150,25,50)(7,41,26,141)(8,152,27,52)(9,43,28,143)(10,154,29,54)(11,45,30,145)(12,156,31,56)(13,47,32,147)(14,158,33,58)(15,49,34,149)(16,160,35,60)(17,51,36,151)(18,142,37,42)(19,53,38,153)(20,144,39,44)(61,94,129,119)(62,110,130,85)(63,96,131,101)(64,112,132,87)(65,98,133,103)(66,114,134,89)(67,100,135,105)(68,116,136,91)(69,82,137,107)(70,118,138,93)(71,84,139,109)(72,120,140,95)(73,86,121,111)(74,102,122,97)(75,88,123,113)(76,104,124,99)(77,90,125,115)(78,106,126,81)(79,92,127,117)(80,108,128,83), (1,102,11,112)(2,103,12,113)(3,104,13,114)(4,105,14,115)(5,106,15,116)(6,107,16,117)(7,108,17,118)(8,109,18,119)(9,110,19,120)(10,111,20,101)(21,98,31,88)(22,99,32,89)(23,100,33,90)(24,81,34,91)(25,82,35,92)(26,83,36,93)(27,84,37,94)(28,85,38,95)(29,86,39,96)(30,87,40,97)(41,128,51,138)(42,129,52,139)(43,130,53,140)(44,131,54,121)(45,132,55,122)(46,133,56,123)(47,134,57,124)(48,135,58,125)(49,136,59,126)(50,137,60,127)(61,152,71,142)(62,153,72,143)(63,154,73,144)(64,155,74,145)(65,156,75,146)(66,157,76,147)(67,158,77,148)(68,159,78,149)(69,160,79,150)(70,141,80,151), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,38,31,28)(22,27,32,37)(23,36,33,26)(24,25,34,35)(29,30,39,40)(41,48,51,58)(42,57,52,47)(43,46,53,56)(44,55,54,45)(49,60,59,50)(61,124,71,134)(62,133,72,123)(63,122,73,132)(64,131,74,121)(65,140,75,130)(66,129,76,139)(67,138,77,128)(68,127,78,137)(69,136,79,126)(70,125,80,135)(81,107,91,117)(82,116,92,106)(83,105,93,115)(84,114,94,104)(85,103,95,113)(86,112,96,102)(87,101,97,111)(88,110,98,120)(89,119,99,109)(90,108,100,118)(141,148,151,158)(142,157,152,147)(143,146,153,156)(144,155,154,145)(149,160,159,150)>;
G:=Group( (1,55,40,155)(2,146,21,46)(3,57,22,157)(4,148,23,48)(5,59,24,159)(6,150,25,50)(7,41,26,141)(8,152,27,52)(9,43,28,143)(10,154,29,54)(11,45,30,145)(12,156,31,56)(13,47,32,147)(14,158,33,58)(15,49,34,149)(16,160,35,60)(17,51,36,151)(18,142,37,42)(19,53,38,153)(20,144,39,44)(61,94,129,119)(62,110,130,85)(63,96,131,101)(64,112,132,87)(65,98,133,103)(66,114,134,89)(67,100,135,105)(68,116,136,91)(69,82,137,107)(70,118,138,93)(71,84,139,109)(72,120,140,95)(73,86,121,111)(74,102,122,97)(75,88,123,113)(76,104,124,99)(77,90,125,115)(78,106,126,81)(79,92,127,117)(80,108,128,83), (1,102,11,112)(2,103,12,113)(3,104,13,114)(4,105,14,115)(5,106,15,116)(6,107,16,117)(7,108,17,118)(8,109,18,119)(9,110,19,120)(10,111,20,101)(21,98,31,88)(22,99,32,89)(23,100,33,90)(24,81,34,91)(25,82,35,92)(26,83,36,93)(27,84,37,94)(28,85,38,95)(29,86,39,96)(30,87,40,97)(41,128,51,138)(42,129,52,139)(43,130,53,140)(44,131,54,121)(45,132,55,122)(46,133,56,123)(47,134,57,124)(48,135,58,125)(49,136,59,126)(50,137,60,127)(61,152,71,142)(62,153,72,143)(63,154,73,144)(64,155,74,145)(65,156,75,146)(66,157,76,147)(67,158,77,148)(68,159,78,149)(69,160,79,150)(70,141,80,151), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,38,31,28)(22,27,32,37)(23,36,33,26)(24,25,34,35)(29,30,39,40)(41,48,51,58)(42,57,52,47)(43,46,53,56)(44,55,54,45)(49,60,59,50)(61,124,71,134)(62,133,72,123)(63,122,73,132)(64,131,74,121)(65,140,75,130)(66,129,76,139)(67,138,77,128)(68,127,78,137)(69,136,79,126)(70,125,80,135)(81,107,91,117)(82,116,92,106)(83,105,93,115)(84,114,94,104)(85,103,95,113)(86,112,96,102)(87,101,97,111)(88,110,98,120)(89,119,99,109)(90,108,100,118)(141,148,151,158)(142,157,152,147)(143,146,153,156)(144,155,154,145)(149,160,159,150) );
G=PermutationGroup([(1,55,40,155),(2,146,21,46),(3,57,22,157),(4,148,23,48),(5,59,24,159),(6,150,25,50),(7,41,26,141),(8,152,27,52),(9,43,28,143),(10,154,29,54),(11,45,30,145),(12,156,31,56),(13,47,32,147),(14,158,33,58),(15,49,34,149),(16,160,35,60),(17,51,36,151),(18,142,37,42),(19,53,38,153),(20,144,39,44),(61,94,129,119),(62,110,130,85),(63,96,131,101),(64,112,132,87),(65,98,133,103),(66,114,134,89),(67,100,135,105),(68,116,136,91),(69,82,137,107),(70,118,138,93),(71,84,139,109),(72,120,140,95),(73,86,121,111),(74,102,122,97),(75,88,123,113),(76,104,124,99),(77,90,125,115),(78,106,126,81),(79,92,127,117),(80,108,128,83)], [(1,102,11,112),(2,103,12,113),(3,104,13,114),(4,105,14,115),(5,106,15,116),(6,107,16,117),(7,108,17,118),(8,109,18,119),(9,110,19,120),(10,111,20,101),(21,98,31,88),(22,99,32,89),(23,100,33,90),(24,81,34,91),(25,82,35,92),(26,83,36,93),(27,84,37,94),(28,85,38,95),(29,86,39,96),(30,87,40,97),(41,128,51,138),(42,129,52,139),(43,130,53,140),(44,131,54,121),(45,132,55,122),(46,133,56,123),(47,134,57,124),(48,135,58,125),(49,136,59,126),(50,137,60,127),(61,152,71,142),(62,153,72,143),(63,154,73,144),(64,155,74,145),(65,156,75,146),(66,157,76,147),(67,158,77,148),(68,159,78,149),(69,160,79,150),(70,141,80,151)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,38,31,28),(22,27,32,37),(23,36,33,26),(24,25,34,35),(29,30,39,40),(41,48,51,58),(42,57,52,47),(43,46,53,56),(44,55,54,45),(49,60,59,50),(61,124,71,134),(62,133,72,123),(63,122,73,132),(64,131,74,121),(65,140,75,130),(66,129,76,139),(67,138,77,128),(68,127,78,137),(69,136,79,126),(70,125,80,135),(81,107,91,117),(82,116,92,106),(83,105,93,115),(84,114,94,104),(85,103,95,113),(86,112,96,102),(87,101,97,111),(88,110,98,120),(89,119,99,109),(90,108,100,118),(141,148,151,158),(142,157,152,147),(143,146,153,156),(144,155,154,145),(149,160,159,150)])
Matrix representation ►G ⊆ GL6(𝔽41)
| 32 | 4 | 0 | 0 | 0 | 0 |
| 0 | 9 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 26 | 29 |
| 0 | 0 | 0 | 0 | 5 | 15 |
| 9 | 37 | 0 | 0 | 0 | 0 |
| 0 | 32 | 0 | 0 | 0 | 0 |
| 0 | 0 | 40 | 0 | 0 | 0 |
| 0 | 0 | 0 | 40 | 0 | 0 |
| 0 | 0 | 0 | 0 | 32 | 0 |
| 0 | 0 | 0 | 0 | 0 | 32 |
| 9 | 0 | 0 | 0 | 0 | 0 |
| 0 | 9 | 0 | 0 | 0 | 0 |
| 0 | 0 | 34 | 34 | 0 | 0 |
| 0 | 0 | 7 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 9 | 13 |
| 0 | 0 | 0 | 0 | 0 | 32 |
| 32 | 0 | 0 | 0 | 0 | 0 |
| 21 | 9 | 0 | 0 | 0 | 0 |
| 0 | 0 | 34 | 34 | 0 | 0 |
| 0 | 0 | 1 | 7 | 0 | 0 |
| 0 | 0 | 0 | 0 | 9 | 0 |
| 0 | 0 | 0 | 0 | 0 | 9 |
G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,4,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,26,5,0,0,0,0,29,15],[9,0,0,0,0,0,37,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,34,7,0,0,0,0,34,1,0,0,0,0,0,0,9,0,0,0,0,0,13,32],[32,21,0,0,0,0,0,9,0,0,0,0,0,0,34,1,0,0,0,0,34,7,0,0,0,0,0,0,9,0,0,0,0,0,0,9] >;
65 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 4Q | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10N | 20A | ··· | 20H | 20I | ··· | 20X |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
| size | 1 | 1 | 1 | 1 | 4 | 4 | 20 | 20 | 2 | ··· | 2 | 4 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
65 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | C4○D4 | D10 | D10 | D10 | D10 | D10 | C4○D20 | 2+ (1+4) | D4⋊6D10 | D5×C4○D4 |
| kernel | C42.114D10 | C4×Dic10 | C4.D20 | D10.12D4 | Dic5.5D4 | Dic5⋊3Q8 | D20⋊8C4 | C4×C5⋊D4 | C23.23D10 | C20.17D4 | C20⋊D4 | D4×C20 | C4×D4 | Dic5 | C20 | C42 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | C4 | C10 | C2 | C2 |
| # reps | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 4 | 4 | 2 | 4 | 2 | 4 | 2 | 16 | 1 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_4^2._{114}D_{10} % in TeX
G:=Group("C4^2.114D10"); // GroupNames label
G:=SmallGroup(320,1231);
// by ID
G=gap.SmallGroup(320,1231);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,1571,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^9>;
// generators/relations